Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
West J Emerg Med ; 22(4): 860-870, 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1328240

ABSTRACT

INTRODUCTION: Healthcare patterns change during disease outbreaks and pandemics. Identification of modified patterns is important for future preparedness and response. Emergency department (ED) crowding can occur because of the volume of patients waiting to be seen, which results in delays in patient assessment or treatment and impediments to leaving the ED once treatment is complete. Therefore, ED crowding has become a growing problem worldwide and represents a serious barrier to healthcare operations. METHODS: This observational study was based on a retrospective review of the epidemiologic and clinical records of patients who presented to the Foundation IRCCS Policlinic San Matteo in Pavia, Italy, during the coronavirus disease 2019 (COVID-19) outbreak (February 21-May 1, 2020, pandemic group). The methods involved an estimation of the changes in epidemiologic and clinical data from the annual baseline data after the start of the COVID-19 pandemic. RESULTS: We identified reduced ED visits (180 per day in the control period vs 96 per day in the pandemic period; P < 0.001) during the COVID-19 pandemic, irrespective of age and gender, especially for low-acuity conditions. However, patients who did present to the ED were more likely to be hemodynamically unstable, exhibit abnormal vital signs, and more frequently required high-intensity care and hospitalization. During the pandemic, ED crowding dramatically increased primarily because of an increased number of visits by patients with high-acuity conditions, changes in patient management that prolonged length of stay, and increased rates of boarding, which led to the inability of patients to gain access to appropriate hospital beds within a reasonable amount of time. During the pandemic, all crowding output indices increased, especially the rates of boarding (36% vs 57%; P < 0.001), "access block" (24% vs 47%; P < 0.001), mean boarding time (640 vs 1,150 minutes [min]; P 0.001), mean "access block" time (718 vs 1,223 min; P < 0.001), and "access block" total time (650,379 vs 1,359,172 min; P < 0.001). CONCLUSION: Crowding in the ED during the COVID-19 pandemic was due to the inability to access hospital beds. Therefore, solutions to this lack of access are required to prevent a recurrence of crowding due to a new viral wave or epidemic.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Crowding , Emergency Service, Hospital , Hospitalization , Humans
2.
JAMA Intern Med ; 180(10): 1345-1355, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1042172

ABSTRACT

Importance: Many patients with coronavirus disease 2019 (COVID-19) are critically ill and require care in the intensive care unit (ICU). Objective: To evaluate the independent risk factors associated with mortality of patients with COVID-19 requiring treatment in ICUs in the Lombardy region of Italy. Design, Setting, and Participants: This retrospective, observational cohort study included 3988 consecutive critically ill patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinating center (Fondazione IRCCS [Istituto di Ricovero e Cura a Carattere Scientifico] Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network from February 20 to April 22, 2020. Infection with severe acute respiratory syndrome coronavirus 2 was confirmed by real-time reverse transcriptase-polymerase chain reaction assay of nasopharyngeal swabs. Follow-up was completed on May 30, 2020. Exposures: Baseline characteristics, comorbidities, long-term medications, and ventilatory support at ICU admission. Main Outcomes and Measures: Time to death in days from ICU admission to hospital discharge. The independent risk factors associated with mortality were evaluated with a multivariable Cox proportional hazards regression. Results: Of the 3988 patients included in this cohort study, the median age was 63 (interquartile range [IQR] 56-69) years; 3188 (79.9%; 95% CI, 78.7%-81.1%) were men, and 1998 of 3300 (60.5%; 95% CI, 58.9%-62.2%) had at least 1 comorbidity. At ICU admission, 2929 patients (87.3%; 95% CI, 86.1%-88.4%) required invasive mechanical ventilation (IMV). The median follow-up was 44 (95% CI, 40-47; IQR, 11-69; range, 0-100) days; median time from symptoms onset to ICU admission was 10 (95% CI, 9-10; IQR, 6-14) days; median length of ICU stay was 12 (95% CI, 12-13; IQR, 6-21) days; and median length of IMV was 10 (95% CI, 10-11; IQR, 6-17) days. Cumulative observation time was 164 305 patient-days. Hospital and ICU mortality rates were 12 (95% CI, 11-12) and 27 (95% CI, 26-29) per 1000 patients-days, respectively. In the subgroup of the first 1715 patients, as of May 30, 2020, 865 (50.4%) had been discharged from the ICU, 836 (48.7%) had died in the ICU, and 14 (0.8%) were still in the ICU; overall, 915 patients (53.4%) died in the hospital. Independent risk factors associated with mortality included older age (hazard ratio [HR], 1.75; 95% CI, 1.60-1.92), male sex (HR, 1.57; 95% CI, 1.31-1.88), high fraction of inspired oxygen (Fio2) (HR, 1.14; 95% CI, 1.10-1.19), high positive end-expiratory pressure (HR, 1.04; 95% CI, 1.01-1.06) or low Pao2:Fio2 ratio (HR, 0.80; 95% CI, 0.74-0.87) on ICU admission, and history of chronic obstructive pulmonary disease (HR, 1.68; 95% CI, 1.28-2.19), hypercholesterolemia (HR, 1.25; 95% CI, 1.02-1.52), and type 2 diabetes (HR, 1.18; 95% CI, 1.01-1.39). No medication was independently associated with mortality (angiotensin-converting enzyme inhibitors HR, 1.17; 95% CI, 0.97-1.42; angiotensin receptor blockers HR, 1.05; 95% CI, 0.85-1.29). Conclusions and Relevance: In this retrospective cohort study of critically ill patients admitted to ICUs in Lombardy, Italy, with laboratory-confirmed COVID-19, most patients required IMV. The mortality rate and absolute mortality were high.


Subject(s)
Coronavirus Infections , Critical Illness , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , Pandemics , Pneumonia, Viral , Respiration, Artificial/statistics & numerical data , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hospital Mortality , Humans , Italy/epidemiology , Male , Middle Aged , Mortality , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Retrospective Studies , Risk Factors , SARS-CoV-2
4.
Eur Radiol ; 30(11): 6161-6169, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-436684

ABSTRACT

OBJECTIVE: To analyze the most frequent radiographic features of COVID-19 pneumonia and assess the effectiveness of chest X-ray (CXR) in detecting pulmonary alterations. MATERIALS AND METHODS: CXR of 240 symptomatic patients (70% male, mean age 65 ± 16 years), with SARS-CoV-2 infection confirmed by RT-PCR, was retrospectively evaluated. Patients were clustered in four groups based on the number of days between symptom onset and CXR: group A (0-2 days), 49 patients; group B (3-5), 75 patients; group C (6-9), 85 patients; and group D (> 9), 31 patients. Alteration's type (reticular/ground-glass opacity (GGO)/consolidation) and distribution (bilateral/unilateral, upper/middle/lower fields, peripheral/central) were noted. Statistical significance was tested using chi-square test. RESULTS: Among 240 patients who underwent CXR, 180 (75%) showed alterations (group A, 63.3%; group B, 72%; group C, 81.2%; group D, 83.9%). GGO was observed in 124/180 patients (68.8%), reticular alteration in 113/180 (62.7%), and consolidation in 71/180 (39.4%). Consolidation was significantly less frequent (p < 0.01). Distribution among groups was as follows: reticular alteration (group A, 70.9%; group B, 72.2%; group C, 57.9%; group D, 46.1%), GGO (group A, 67.7%; group B, 62.9%; group C, 71%; group D, 76.9%), and consolidation (group A, 35.5%; group B, 31.4%; group C, 47.8%; group D, 38.5%). Alterations were bilateral in 73.3%. Upper, middle, and lower fields were involved in 36.7%, 79.4%, and 87.8%, respectively. Lesions were peripheral in 49.4%, central in 11.1%, or both in 39.4%. Upper fields and central zones were significantly less involved (p < 0.01). CONCLUSIONS: The most frequent lesions in COVID-19 patients were GGO (intermediate/late phase) and reticular alteration (early phase) while consolidation gradually increased over time. The most frequent distribution was bilateral, peripheral, and with middle/lower predominance. Overall rate of negative CXR was 25%, which progressively decreased over time. KEY POINTS: • The predominant lung changes were GGO and reticular alteration, while consolidation was less frequent. • The typical distribution pattern was bilateral, peripheral, or both peripheral and central and involved predominantly the lower and middle fields. • Chest radiography showed lung abnormalities in 75% of patients with confirmed SARS-CoV-2 infection, range varied from 63.3 to 83.9%, respectively, at 0-2 days and > 9 days from the onset of symptoms.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Radiography, Thoracic/methods , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Chi-Square Distribution , Coronavirus Infections/physiopathology , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , Retrospective Studies , SARS-CoV-2 , Time Factors , Young Adult
6.
Ultrasound Med Biol ; 46(8): 2090-2093, 2020 08.
Article in English | MEDLINE | ID: covidwho-186451

ABSTRACT

Lung ultrasound gained a leading position in the last year as an imaging technique for the assessment and management of patients with acute respiratory failure. In coronavirus disease 2019 (COVID-19), its role may be of further importance because it is performed bedside and may limit chest X-ray and the need for transport to radiology for computed tomography (CT) scan. Since February 21, we progressively turned into a coronavirus-dedicated intensive care unit and applied an ultrasound-based approach to avoid traditional imaging and limit contamination as much as possible. We performed a complete daily examination with lung ultrasound score computation and systematic search of complications (pneumothorax, ventilator-associated pneumonia); on-duty physicians were free to perform CT or chest X-ray when deemed indicated. We compared conventional imaging exams performed in the first 4 wk of the COVID-19 epidemic with those in the same time frame in 2019: there were 84 patients in 2020 and 112 in 2019; 64 and 22 (76.2% vs. 19.6%, p < 0.001) had acute respiratory failure, respectively, of which 55 (85.9%) were COVID-19 in 2020. When COVID-19 patients in 2020 were compared with acute respiratory failure patients in 2019, the median number of chest X-rays was 1.0 (1.0-2.0) versus 3.0 (1.0-4.0) (p = 0.0098); 2 patients 2 (3.6%) versus 7 patients (31.8%) had undergone at least one thoracic CT scan (p = 0.001). A self-imposed ultrasound-based approach reduces the number of chest X-rays and thoracic CT scans in COVID-19 patients compared with patients with standard acute respiratory failure, thus reducing the number of health care providers exposed to possible contamination and sparing personal protective equipment.


Subject(s)
Coronavirus Infections/diagnostic imaging , Occupational Exposure/prevention & control , Pneumonia, Viral/diagnostic imaging , Respiratory Insufficiency/diagnostic imaging , Ultrasonography/methods , Aged , Betacoronavirus , COVID-19 , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , SARS-CoV-2
7.
Eur J Heart Fail ; 22(5): 911-915, 2020 05.
Article in English | MEDLINE | ID: covidwho-46118

ABSTRACT

We describe the first case of acute cardiac injury directly linked to myocardial localization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a 69-year-old patient with flu-like symptoms rapidly degenerating into respiratory distress, hypotension, and cardiogenic shock. The patient was successfully treated with venous-arterial extracorporeal membrane oxygenation (ECMO) and mechanical ventilation. Cardiac function fully recovered in 5 days and ECMO was removed. Endomyocardial biopsy demonstrated low-grade myocardial inflammation and viral particles in the myocardium suggesting either a viraemic phase or, alternatively, infected macrophage migration from the lung.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Heart/virology , Myocarditis/virology , Pneumonia, Viral/complications , Shock, Cardiogenic/therapy , Shock, Cardiogenic/virology , Aged , Biopsy , COVID-19 , Coronavirus Infections/therapy , Coronavirus Infections/virology , Extracorporeal Membrane Oxygenation , Heart Failure/pathology , Heart Failure/therapy , Heart Failure/virology , Humans , Male , Myocarditis/pathology , Myocardium/pathology , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Respiration, Artificial , SARS-CoV-2 , Shock, Cardiogenic/etiology , Shock, Cardiogenic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL